Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Transl Immunology ; 11(10): e1422, 2022.
Article in English | MEDLINE | ID: covidwho-2084351

ABSTRACT

Objective: Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265-273, and its IBV and ICV homologues, presented by HLA-A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods: We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265-IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265-IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross-react towards these homologous peptides. Furthermore, we determined the structures of NP265-IAV and NP323-IBV peptides in complex with HLA-A*03:01 by X-ray crystallography. Results: Our study provides a detailed characterisation of the CD8+ T cell response towards NP265-IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265-IAV that is associated with superior anti-viral protection. Evidence of cross-reactivity between the three different influenza virus strain-derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion: We show that while there is a potential to cross-protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.

2.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1700612

ABSTRACT

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , COVID-19/genetics , COVID-19/virology , Conserved Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Memory T Cells/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444119

ABSTRACT

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Subject(s)
COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , CD8-Positive T-Lymphocytes/cytology , Crystallography, X-Ray , Cytokines/metabolism , Epitopes/chemistry , HLA-A2 Antigen/chemistry , Humans , Mutation , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Folding , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology
4.
iScience ; 24(2): 102096, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1385756

ABSTRACT

CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01.

5.
FEBS J ; 288(17): 5042-5054, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1295003

ABSTRACT

The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Hyperglycemia/immunology , T-Lymphocytes/immunology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/virology , Humans , Hyperglycemia/complications , Hyperglycemia/pathology , Hyperglycemia/virology , Pandemics , SARS-CoV-2/pathogenicity , T-Lymphocytes/virology
6.
Biophysica ; 1(2):194-203, 2021.
Article in English | MDPI | ID: covidwho-1234669

ABSTRACT

The SARS-CoV-2 virus responsible for the COVID-19 pandemic has caused significant morbidity and mortality worldwide. With the remarkable advances in medical research, vaccines were developed to prime the human immune system and decrease disease severity. Despite these achievements, the fundamental basis of immunity to the SARS-CoV-2 virus is still largely undefined. Here, we solved the crystal structure of three spike-derived peptides presented by three different HLA molecules, and determined the stability of the overall peptide–HLA complexes formed. The peptide presentation of spike-derived peptides can influence the way in which CD8+ T cells can recognise infected cells, clear infection, and therefore, control the outcome of the disease.

7.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1179683

ABSTRACT

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Coronavirus/classification , Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Cross Reactions , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/genetics , HLA-B7 Antigen/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Models, Molecular , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
SELECTION OF CITATIONS
SEARCH DETAIL